Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure

Belyaev Mikhail ${ }^{1,2,3}$, Burnaev Evgeny ${ }^{1,2,3}$, Kapushev Yermek ${ }^{1,2}$
${ }^{1}$ Institute for Information Transmission Problems, Moscow, Russia
${ }^{2}$ DATADVANCE, Ilc, Moscow, Russia
${ }^{3}$ PreMoLab, MIPT, Dolgoprudny, Russia

ICML 2014 workshop on New Learning Frameworks and Models for Big Data

Beijing, 2014

Problem statement

- Let $y=g(x)$ be some unknown function.
- The training sample is given

$$
\mathcal{D}=\left\{x_{i}, y_{i}\right\}, g\left(x_{i}\right)=y_{i}, i=1, \ldots, N .
$$

- The task is to construct $\hat{f}(x)$ such that:

$$
\hat{f}(x) \approx g(x)
$$

- Factors:

$$
\begin{array}{r}
s^{k}=\left\{x_{i_{k}}^{k} \in \mathrm{X}^{k}, i_{k}=1, \ldots, n_{k}\right\}, \mathrm{X}^{k} \in \mathrm{R}^{d_{k}}, \\
k=1, \ldots, K ;
\end{array}
$$

d_{k} - dimensionality of the factor s^{k}.

- Factorial Design of Experiments:

$$
\mathbf{S}=\left\{x_{i}\right\}_{i=1}^{N}=s^{1} \times s^{2} \times \cdots \times s^{K} .
$$

- Dimensionality of $x \in \mathbf{S}: d=\sum_{k=1}^{K} d_{k}$.
- Sample size: $N=\prod_{k=1}^{K} n_{k}$

Figure: Factorial DoE with multidimensional factor

DoE in engineering problems

(1) Independent groups of variables - factors.
(2) Training sample generation procedure:

- Fix values of the first factor.
- Perform experiments varying values of other factors.
- Fix other value of the first factor.
- Perform new series of experiments.
(3) Take into account knowledge from a subject domain.

Data properties

- Has special structure
- Can have large sample size
- Factors' sizes can differ significantly

Modeling of pressure distribution over the aircraft wing:

- Angle of attack: $s^{1}=\{0,0.8,1.6,2.4,3.2,4.0\}$.
- Mach number: $s^{2}=\{0.77,0.78,0.79,0.8,0.81,0.82,0.83\}$.
- Wing points coordinates: $s^{3}-5000$ point in \mathbb{R}^{3}.

The training sample:

- $\mathbf{S}=s^{1} \times s^{2} \times s^{3}$.
- Dimensionality $d=1+1+3=5$.
- Sample size $N=6 * 7 * 5000=210000$.
- Universal techniques:

Disadvantages: don't take into account sample structure \Rightarrow low approximation quality, high computational complexity

- Multivariate Adaptive Regression Splines [Friedman, 1991] Disadvantages: discontinuous derivatives, non-physical behaviour
- Tensor product of splines [Stone et al., 1997, Xiao et al., 2013] Disadvantages: only one-dimensional factors, no accuracy evaluation procedure
- Gaussian Processes on lattice
[Dietrich and Newsam, 1997, Stroud et al., 2014]
Disadvantages: two-dimensional grid with equidistant points

The aim is
to develop computationally efficient algorithm taking into account special features of factorial Design of Experiments

- Function model

$$
g(x)=f(x)+\varepsilon(x)
$$

where $f(x)$ - Gaussian process (GP), $\varepsilon(x)$ - Gaussian white noise.

- GP is fully defined by its mean and covariance function.
- The covariance function of $f(x)$

$$
K_{f}\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(-\sum_{i=1}^{d} \theta_{i}^{2}\left(x^{(i)}-x^{\prime(i)}\right)^{2}\right)
$$

where $x^{(i)}-i$-th component of vector, $\boldsymbol{\theta}=\left(\sigma_{f}^{2}, \theta_{1}, \ldots, \theta_{d}\right)$ - parameters of the covariance function.

- The covariance function of $g(x)$:

$$
K_{g}\left(x, x^{\prime}\right)=K\left(x, x^{\prime}\right)+\sigma_{\text {noise }}^{2} \delta\left(x, x^{\prime}\right)
$$

$\delta\left(x, x^{\prime}\right)$ - Kronecker delta.

Maximum Likelihood Estimation

- Loglikelihood

$$
\log p(\mathbf{y} \mid X, \boldsymbol{\theta})=-\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{g}^{-1} \mathbf{y}-\frac{1}{2} \log \left|\mathbf{K}_{g}\right|-\frac{N}{2} \log 2 \pi
$$

where $\left|\mathbf{K}_{g}\right|$ - determinant of matrix $\mathbf{K}_{g}=\left\|K_{g}\left(x_{i}, x_{j}\right)\right\|_{i, j=1}^{N}, x_{i}, x_{j} \in \mathbf{S}$.

- Parameters $\boldsymbol{\theta}^{*}$ are chosen such that

$$
\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\arg \max }(\log p(\mathbf{y} \mid X, \boldsymbol{\theta}))
$$

- Prediction of $g(x)$ at point x

$$
\hat{f}(x)=\mathbf{k}^{T} \mathbf{K}_{g}^{-1} \mathbf{y}
$$

where $\mathbf{k}=\left(K_{f}\left(x_{1}, x\right), \ldots, K_{f}\left(x_{n}, x\right)\right)$.

- Posterior variance

$$
\sigma^{2}(x)=K_{f}(x, x)-\mathbf{k}^{T} \mathbf{K}_{g}^{-1} \mathbf{k} .
$$

Issues:

(1) High computational complexity: $\mathcal{O}\left(N^{3}\right)$.

In case of factorial DoE the sample size N can be very large.
(2) Degeneracy as a result of significantly different factor sizes.

Gaussian Processes for factorial DoE

Issues:
(1) High computational complexity: $\mathcal{O}\left(N^{3}\right)$.

In case of factorial DoE the sample size N can be very large.
(2) Degeneracy as a result of significantly different factor sizes.

- Loglikelihood:

$$
\log p(\mathbf{y} \mid X, \boldsymbol{\theta})=-\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{g}^{-1} \mathbf{y}-\frac{1}{2} \log \left|\mathbf{K}_{g}\right|-\frac{N}{2} \log 2 \pi,
$$

- Derivatives:

$$
\frac{\partial}{\partial \theta}\left(\log p\left(\mathbf{y} \mid \mathbf{X}, \sigma_{f}, \sigma_{n o i s e}\right)\right)=-\frac{1}{2} \operatorname{Tr}\left(\mathbf{K}_{g}^{-1} \mathbf{K}^{\prime}\right)+\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{g}^{-1} \mathbf{K}^{\prime} \mathbf{K}_{g}^{-1} \mathbf{y}
$$

where θ is a parameter of covariance function (component of $\theta_{i}, \sigma_{\text {noise }}$ or $\left.\sigma_{f, i}, i=1, \ldots, d\right)$, and $\mathbf{K}^{\prime}=\frac{\partial \mathbf{K}}{\partial \theta}$

Definition

Tensor \mathcal{Y} is a K-dimensional matrix of size $n_{1} * n_{2} * \cdots * n_{K}$:

$$
\mathcal{Y}=\left\{y_{i_{1}, i_{2}, \ldots, i_{K}},\left\{i_{k}=1, \ldots, n_{k}\right\}_{k=1}^{K}\right\} .
$$

Definition

The Kronecker product of matrices A and B is a block matrix

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

Related operations

- Operation vec:

$$
\operatorname{vec}(\mathcal{Y})=\left[\mathcal{Y}_{1,1, \ldots, 1}, \mathcal{Y}_{2,1, \ldots, 1}, \ldots, \mathcal{Y}_{n_{1}, 1, \ldots, 1}, \mathcal{Y}_{1,2, \ldots, 1}, \ldots, \mathcal{Y}_{n_{1}, n_{2}, \ldots, n_{K}}\right]
$$

- Multiplication of a tensor by a matrix along k-th direction

$$
\mathcal{Z}=\mathcal{Y} \otimes_{k} \mathrm{~B} \quad \Leftrightarrow \quad \mathcal{Z}_{i_{1}, \ldots, i_{k-1}, j, i_{k+1}, \ldots i_{K}}=\sum_{i_{k}} \mathcal{Y}_{i_{1}, \ldots, i_{k}, \ldots, i_{K}} \mathrm{~B}_{i_{k} j} .
$$

- Connection between tensors and the Kronecker product:

$$
\begin{equation*}
\operatorname{vec}\left(\mathcal{Y} \otimes_{1} \mathrm{~B}_{1} \cdots \otimes_{\mathrm{K}} \mathrm{~B}_{\mathrm{K}}\right)=\left(\mathrm{B}_{1} \otimes \cdots \otimes \mathrm{~B}_{\mathrm{K}}\right) \operatorname{vec}(\mathcal{Y}) \tag{1}
\end{equation*}
$$

Complexity of computation of the left part $-O\left(N \sum_{k} n_{k}\right)$, of the right part $-O\left(N^{2}\right)$.

- Form of the covariance function:

$$
K_{f}(x, y)=\prod_{i=1}^{K} k_{i}\left(x^{i}, y^{i}\right), \quad x^{i}, y^{i} \in s^{i}
$$

where k_{i} is an arbitrary covariance function for i-th factor.

- Covariance matrix:

$$
\mathbf{K}=\bigotimes_{i=1}^{K} \mathbf{K}_{i},
$$

\mathbf{K}_{i} is a covariance matrix for i-th factor.

Proposition

Let $\mathbf{K}_{i}=\mathbf{U}_{i} \mathbf{D}_{i} \mathbf{U}_{i}^{T}$ be a Singular Value Decomposition (SVD) of the matrix \mathbf{K}_{i}, where \mathbf{U}_{i} is an orthogonal matrix, and \mathbf{D}_{i} is diagonal. Then:

$$
\begin{align*}
& \left|\mathbf{K}_{g}\right|=\prod_{i_{1}, \ldots, i_{K}} \mathcal{D}_{i_{1}, \ldots, i_{K}}, \\
& \mathbf{K}_{g}^{-1}=\left(\bigotimes_{k} \mathbf{U}_{k}^{T}\right)\left(\bigotimes_{k} \mathbf{D}_{k}+\sigma_{n o i s e}^{2} \mathbf{I}\right)^{-1}\left(\bigotimes_{k} \mathbf{U}_{k}\right) \tag{2}\\
& \mathbf{K}_{g}^{-1} \mathbf{y}=\operatorname{vec}\left[\left(\left(\mathcal{Y} \otimes_{1} \mathbf{U}_{1} \cdots \otimes_{K} \mathbf{U}_{K}\right) * \mathcal{D}^{-1}\right) \otimes_{1} \mathbf{U}_{1}^{T} \cdots \otimes_{K} \mathbf{U}_{K}^{T}\right]
\end{align*}
$$

where \mathcal{D} is a tensor of diagonal elements of the matrix $\sigma_{\text {noise }}^{2} \mathbf{I}+\bigotimes_{k} \mathbf{D}_{k}$

Computational complexity

Proposition

Calculation of the loglikelihood using (2) has the following computation complexity

$$
\mathcal{O}\left(N \sum_{i=1}^{K} n_{i}+\sum_{i=1}^{K} n_{i}^{3}\right)
$$

Assuming $n_{i} \ll N$ (number of factors is large and their sizes are close) we get

$$
\mathcal{O}\left(N \sum n_{i}\right)=\mathcal{O}\left(N^{1+\frac{1}{K}}\right)
$$

Proposition

The following statements hold

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathbf{K}_{g}^{-1} \mathbf{K}^{\prime}\right)=\left\langle\operatorname{diag}\left(\hat{\mathbf{D}}^{-1}\right), \bigotimes_{i=1}^{K} \operatorname{diag}\left(\mathbf{U}_{i} \mathbf{K}_{i}^{\prime} \mathbf{U}_{i}\right)\right\rangle \\
& \frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{g}^{-1} \mathbf{K}^{\prime} \mathbf{K}_{g}^{-1} \mathbf{y}=\left\langle\mathcal{A}, \mathcal{A} \otimes_{1} \mathbf{K}_{1}^{T} \otimes_{2} \cdots \otimes_{i-1} \mathbf{K}_{i-1}^{T} \otimes_{i}\right. \\
&\left.\otimes_{i} \frac{\partial \mathbf{K}_{i}^{T}}{\partial \theta} \otimes_{i+1} \mathbf{K}_{i+1}^{T} \otimes_{i+2} \cdots \otimes_{K} \mathbf{K}_{K}^{T}\right\rangle
\end{aligned}
$$

where $\hat{\mathbf{D}}=\sigma_{\text {noise }}^{2} \mathbf{I}+\bigotimes_{k} \mathbf{D}_{k}$, and $\operatorname{vec}(\mathcal{A})=\mathbf{K}_{g}^{-1} \mathbf{y}$.
The computational complexity is

$$
\mathcal{O}\left(N \sum_{i=1}^{K} n_{i}+\sum_{i=1}^{K} n_{i}^{3}\right)
$$

Issues:
(1) High computational complexity: $\mathcal{O}\left(N^{3}\right)$.

In case of factorial DoE the sample size N can be very large.
(2) Degeneracy as a result of significantly different factor sizes.

Gaussian Processes for facotrial DoE

Issues:
(1) High computational complexity: $\mathcal{O}\left(N^{3}\right)$.

In case of factorial DoE the sample size N can be very large.
(2) Degeneracy as a result of significantly different factor sizes.

Example of degeneracy

Figure: Original function

Figure: Approximation obtained using GP from GPML toolbox

- Prior distribution:

$$
\begin{aligned}
& \frac{\theta_{k}^{(i)}-a_{k}^{(i)}}{b_{k}^{(i)}-a_{k}^{(i)}} \sim \mathcal{B} e(\alpha, \beta),\left\{i=1, \ldots, d_{k}\right\}_{k=1}^{K} \\
a_{k}^{(i)}= & \frac{c_{k}}{\max _{x, y \in s^{k}}\left(x^{(i)}-y^{(i)}\right)}, \quad b_{k}^{(i)}=\frac{C_{k}}{\min _{x, y \in s^{k}, x \neq y}\left(x^{(i)}-y^{(i)}\right)}
\end{aligned}
$$

where $\mathcal{B} e(\alpha, \beta)$ is the Beta distribution, c_{k} and C_{k} are parameters of the algorithm (we use $c_{k}=0.01$ and $C_{k}=2$).

- Initialization

$$
\theta_{k}^{(i)}=\left[\frac{1}{n_{k}}\left(\max _{x \in s^{k}}\left(x^{(i)}\right)-\min _{x \in s^{k}}\left(x^{(i)}\right)\right)\right]^{-1} .
$$

Regularization

Loglikelihood:

$$
\log p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma_{f}, \sigma_{n o i s e}\right)=-\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{y}^{-1} \mathbf{y}-\frac{1}{2} \log \left|\mathbf{K}_{y}\right|-\frac{N}{2} \log 2 \pi
$$

Regularization

Loglikelihood:

$$
\begin{array}{r}
\log p\left(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma_{f}, \sigma_{n o i s e}\right)=-\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{y}^{-1} \mathbf{y}-\frac{1}{2} \log \left|\mathbf{K}_{y}\right|-\frac{N}{2} \log 2 \pi \\
+\sum_{k, i}\left((\alpha-1) \log \left(\frac{\theta_{k}^{(i)}-a_{k}^{(i)}}{b_{k}^{(i)}-a_{k}^{(i)}}\right)+(\beta-1) \log \left(1-\frac{\theta_{k}^{(i)}-a_{k}^{(i)}}{b_{k}^{(i)}-a_{k}^{(i)}}\right)\right)- \\
-d \log (\mathrm{~B}(\alpha, \beta)) .
\end{array}
$$

Figure: Penalty function

Regularization

Example of regularized approximation

Figure: Original function

Figure: Approximation obtained using developed algorithm with regularization

- Set of 34 functions (usual artificial test functions used for testing of global optimization algorithms)
- Dimensionality - from 2 to 6 .
- Sample sizes from 80 to 216000 with full factorial DoE
- Quality criteria - training time and approximation error:

$$
\mathrm{MSE}=\frac{1}{N_{\text {test }}} \sum_{i=1}^{N_{\text {test }}}\left(\hat{f}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Tested algorithms:
- MARS - Multivariate Adaptive Regression Splines
- SparseGP - sparse Gaussian Processes (GPML toolbox)
- tensorGP - developed algorithm without regularization
- tensorGP-reg - developed algorithm with regularization
- T problems, A algorithms.
- $e_{t a}$ - approximation error (or training time) of a-th algorithm on t-th problem.
- $\tilde{e}_{t}=\min _{a} e_{t a}$.

$$
\rho_{a}(\tau)=\frac{\#\left\{t: e_{t a}<\tau \tilde{e}_{t}\right\}}{T}
$$

- The higher the curve is the better works the corresponding algorithm.
- $\rho_{a}(1)$ - fraction of problems for which a-th algorithm worked the best.

Results of experiments: training time

Figure : Dolan-Moré curves. Quality criterion - training time

Results of experiments: approximation quality

Figure: Dolan-Moré curves. Quality criterion - MSE

Real problem: Rotating disc of an impeller

Objective functions:

- p_{1} - contact pressure.
- $S_{r_{\text {max }}}$ - maximum radial stress.
- w - weight of disc.

The geometrical shape of the disc is parametrized by 6 input variables
$x=\left(h_{1}, h_{2}, h_{3}, h_{4}, r_{2}, r_{3}\right)\left(r_{1}\right.$ and r_{4} are fixed)

Training sample (generated from computational physical model):

- Sample size - 14400

Figure: Rotating disc of an impeller

- Factor sizes $\{1,8,8,3,15,5\}$

Table: Approximation errors of p_{1}

$$
\begin{array}{crrr}
\hline & \text { MAE } & \text { MSE } & \text { RRMS } \\
\text { MARS } & 4.4644 & 6.5120 & 0.1166 \\
\text { SparseGP } & 76.9313 & 86.7034 & 1.5530 \\
\text { TENSORGP-REG } & 0.3020 & 0.3981 & 0.0070 \\
\hline \text { MAE }=\frac{1}{N_{\text {test }}} \sum_{i=1}^{N_{\text {test }}}\left|\hat{f}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right|, \\
\mathrm{MSE}=\frac{1}{N_{\text {test }}} \sum_{i=1}^{N_{\text {test }}}\left(\hat{f}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right)^{2} \\
\mathrm{RRMS}=\sqrt{\frac{\sum_{i=1}^{N_{\text {test }}}\left(\hat{f}\left(\mathbf{x}_{i}\right)-g\left(\mathbf{x}_{i}\right)\right)^{2}}{\sum_{i=1}^{N_{\text {test }}}\left(\bar{y}-g\left(\mathbf{x}_{i}\right)\right)^{2}}, \quad \bar{y}=\frac{1}{N} \sum_{i=1}^{N} y_{i} .}
\end{array}
$$

2D-slices of approximations (other parameters are fixed)

Figure: GPML Sparse GP is applied

Figure: Approximation obtained using developed algorithm with regularization

Reasons for missing points:

- Data generation is in progress (each point calculation is time consuming).
- Data generator failed in some points.
- $\mathbf{S}_{\text {full }}$ - full factorial DoE.
$N_{\text {full }}=\left|\mathbf{S}_{\text {full }}\right|$.
- \mathbf{S} - incomplete factorial DoE.
$N=|\mathbf{S}|$.
- $\mathbf{S} \subset \mathbf{S}_{\text {full }}$
\Rightarrow Covariance matrix is not the Kronecker product!

$$
\mathbf{K}_{f} \neq \bigotimes_{i=1}^{K} \mathbf{K}_{i} .
$$

Notation

- $\left\{x_{i}\right\}_{i=1}^{N_{\text {full }}}=\mathbf{S}_{\text {full }}$.
- $\widetilde{\mathbf{K}}_{f}$ - covariance matrix for full factorial DoE $\mathbf{S}_{\text {full }}$.
- \mathbf{W} - diagonal matrix such that $\mathbf{W}_{i i}= \begin{cases}1, & \text { if } x_{i} \in \mathbf{S} \\ 0, & \text { if } x_{i} \notin \mathbf{S}\end{cases}$
- $\tilde{\mathbf{y}}$ - vector of outputs \mathbf{y} extended by arbitrary values.

Proposition

Let $\tilde{\mathbf{z}}^{*}$ be a solution of

$$
\begin{equation*}
\left(\widetilde{\mathbf{K}}_{f} \mathbf{W} \widetilde{\mathbf{K}}_{f}+\sigma_{\text {noise }}^{2} \widetilde{\mathbf{K}}_{f}\right) \tilde{\mathbf{z}}=\widetilde{\mathbf{K}}_{f} \mathbf{W} \tilde{\mathbf{y}} \tag{3}
\end{equation*}
$$

Then the solution \mathbf{z}^{*} of $\left(\mathbf{K}_{f}+\sigma_{\text {noise }}^{2} \mathbf{I}\right) \mathbf{z}=\mathbf{y}$, i.e.

$$
\mathbf{z}^{*}=\left(\mathbf{K}_{f}+\sigma_{\text {noise }}^{2} \mathbf{I}\right)^{-1} \mathbf{y}
$$

has the form $\mathbf{z}^{*}=\left(\tilde{\mathbf{z}}_{i_{1}}^{*}, \ldots, \tilde{\mathbf{z}}_{i_{N}}^{*}\right)$, where $i_{k} \in\left\{j: x_{j} \in \mathbf{S}\right\}, k=1, \ldots, N$.

Computation of loglikelihood

- $R=N_{\text {full }}-N$ - number of missing points.
- $\widetilde{\mathbf{U}}=\bigotimes_{i=1}^{K} \widetilde{\mathbf{U}}_{i}$
- $\widetilde{\mathbf{D}}=\bigotimes_{i=1}^{K} \widetilde{\mathbf{D}}_{i}$.
- $\hat{\tilde{\mathbf{D}}}=\widetilde{\mathbf{D}}+\sigma_{\text {noise }}^{2} \mathbf{I}$.
- The change of variables

$$
\tilde{\boldsymbol{\alpha}}= \begin{cases}(\hat{\tilde{\mathbf{D}}} \tilde{\mathbf{D}})^{\frac{1}{2}} \widetilde{\mathbf{U}}^{T} \tilde{\mathbf{z}} & \text { if } R<N, \tag{4}\\ \left(\sigma_{\text {noise }}^{2} \tilde{\mathbf{D}}\right)^{\frac{1}{2}} \widetilde{\mathbf{U}}^{T} \tilde{\mathbf{z}} & \text { if } R \geq N .\end{cases}
$$

Proposition

System of linear equations (3) can be solved using the change of variables (4) and Conjugate Gradient Method in at most $\min (R+1, N+1)$ iterations. The computational complexity of each iteration is $\mathcal{O}\left(N_{\text {full }} \sum_{k} n_{k}\right)$.

- $\widetilde{\mathbf{K}}_{f}+\sigma_{\text {noise }}^{2} \mathbf{I}=\left(\begin{array}{ll}\mathbf{K}_{g} & \mathbf{A} \\ \mathbf{A}^{T} & \mathbf{B}\end{array}\right)$
- Determinant

$$
\begin{equation*}
\left|\mathbf{K}_{g}\right|=\frac{\left|\widetilde{\mathbf{K}}_{f}+\sigma_{\text {noise }}^{2} \mathbf{I}\right|}{\left|\mathbf{B}-\mathbf{A}^{T} \mathbf{K}_{g}^{-1} \mathbf{A}\right|} . \tag{5}
\end{equation*}
$$

- $\left|\widetilde{\mathbf{K}}_{f}+\sigma_{\text {noise }}^{2} \mathbf{I}\right|$ is computed using formulae for full factorial case.
- $\left|\mathbf{B}-\mathbf{A}^{T} \mathbf{K}_{g}^{-1} \mathbf{A}\right|$ is computed numerically.

Proposition

The complexity of computing determinant using (5) is $\mathcal{O}\left(\min \{R+1, N+1\} R N_{\text {full }} \sum_{k} n_{k}\right)$.

The developed algorithm

- is computationally efficient;
- can handle large samples;
- takes into account features of given data;
- is proved to be efficient on a large set of toy problems as well as real world problems.

Thank you for attention!

More details are given in

- Belyaev, M., Burnaev, E., and Kapushev, Y. (2014). Exact inference for gaussian process regression in case of big data with the cartesian product structure. arXiv preprint arXiv:1403.6573

目
Dietrich, C. R. and Newsam, G. N. (1997).
Fast and exact simulation of stationary gaussian processes through circulant embedding of the covariance matrix.
SIAM J. Sci. Comput., 18(4):1088-1107.
Friedman, J. (1991).
Multivariate adaptive regression splines.
Annals of Statistic, 19(1):1-141.
Stone, C., Hansen, M., Kooperberg, C., and Truong, Y. (1997).
Polynomial splines, their tensor products in extended linear modeling.
Annals of Statistic, 25:1371-1470.

Stroud, J. R., Stein, M. L., and Lysen, S. (2014).
Bayesian and maximum likelihood estimation for gaussian processes on an incomplete lattice.
arXiv preprint arXiv:1402.4281.

Xiao, L., Li, Y., and Ruppert, D. (2013).
Fast bivariate p-splines: the sandwich smoother.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3):577-599.

