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Approximation task

Problem statement

Let y = g (x) be some unknown function.

The training sample is given

D = {xi, yi}, g (xi) = yi, i = 1, . . . , N.

The task is to construct f̂ (x) such that:

f̂ (x) ≈ g(x).
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Factorial Design of Experiments

Factors:

sk = {xkik ∈ Xk, ik = 1, . . . ,nk}, Xk ∈ Rdk ,

k = 1, . . . ,K;

dk — dimensionality of the factor sk.

Factorial Design of Experiments:

S = {xi}Ni=1 = s1 × s2 × · · · × sK .

Dimensionality of x ∈ S: d =
∑K

k=1 dk.

Sample size: N =
∏K

k=1 nk
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Example of Factorial DoE
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Figure : Factorial DoE with multidimensional factor
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DoE in engineering problems

1 Independent groups of variables — factors.

2 Training sample generation procedure:
Fix values of the first factor.
Perform experiments varying values of other factors.
Fix other value of the first factor.
Perform new series of experiments.

3 Take into account knowledge from a subject domain.

Data properties

Has special structure

Can have large sample size

Factors’ sizes can differ significantly
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Example of Factorial DoE

Modeling of pressure distribution over the aircraft wing:

Angle of attack: s1 = {0, 0.8, 1.6, 2.4, 3.2, 4.0}.
Mach number: s2 = {0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83}.
Wing points coordinates: s3 — 5000 point in R3.

The training sample:

S = s1 × s2 × s3.
Dimensionality d = 1 + 1 + 3 = 5.

Sample size N = 6 ∗ 7 ∗ 5000 = 210000.
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Existing solutions

Universal techniques:
Disadvantages: don’t take into account sample structure ⇒ low
approximation quality, high computational complexity

Multivariate Adaptive Regression Splines [Friedman, 1991]
Disadvantages: discontinuous derivatives, non-physical behaviour

Tensor product of splines [Stone et al., 1997, Xiao et al., 2013]
Disadvantages: only one-dimensional factors, no accuracy evaluation
procedure

Gaussian Processes on lattice
[Dietrich and Newsam, 1997, Stroud et al., 2014]
Disadvantages: two-dimensional grid with equidistant points
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The aim is
to develop computationally efficient algorithm taking into
account special features of factorial Design of Experiments
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Gaussian Process Regression

Function model
g(x) = f(x) + ε(x),

where f(x) — Gaussian process (GP), ε(x) — Gaussian white noise.

GP is fully defined by its mean and covariance function.

The covariance function of f(x)

Kf (x, x′) = σ2
f exp

(
−

d∑
i=1

θ2i (x(i) − x′(i))2
)
,

where x(i) — i-th component of vector, θ = (σ2
f , θ1, . . . , θd) — parameters

of the covariance function.

The covariance function of g(x):

Kg(x, x′) = K(x, x′) + σ2
noiseδ(x, x

′),

δ(x, x′) — Kronecker delta.
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Choosing parameters

Maximum Likelihood Estimation

Loglikelihood

log p(y |X,θ) = −1

2
yTK−1

g y − 1

2
log |Kg| −

N

2
log 2π,

where |Kg| — determinant of matrix Kg = ‖Kg(xi, xj)‖Ni,j=1 , xi, xj ∈ S.

Parameters θ∗ are chosen such that

θ∗ = arg max
θ

(log p(y |X,θ))
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Final model

Prediction of g(x) at point x

f̂(x) = kTK−1
g y,

where k = (Kf (x1, x), . . . ,Kf (xn, x)).

Posterior variance

σ2(x) = Kf (x, x)− kTK−1
g k.
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Gaussian Processes for factorial DoE

Issues:
1 High computational complexity: O(N3).

In case of factorial DoE the sample size N can be very large.

2 Degeneracy as a result of significantly different factor sizes.
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Estimation of covariance function parameters

Loglikelihood:

log p(y |X,θ) = −1

2
yTK−1

g y − 1

2
log |Kg| −

N

2
log 2π,

Derivatives:

∂

∂θ
(log p(y|X, σf , σnoise)) = −1

2
Tr(K−1

g K′) +
1

2
yTK−1

g K′K−1
g y,

where θ is a parameter of covariance function (component of θi, σnoise or

σf,i, i = 1, . . . , d), and K′ =
∂K

∂θ
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Tensors and Kronecker product

Definition

Tensor Y is a K-dimensional matrix of size n1 ∗ n2 ∗ · · · ∗ nK :

Y =
{
yi1,i2,...,iK , {ik = 1, . . . , nk}Kk=1

}
.

Definition

The Kronecker product of matrices A and B is a block matrix

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
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Related operations

Operation vec:

vec(Y) = [Y1,1,...,1,Y2,1,...,1, . . . ,Yn1,1,...,1,Y1,2,...,1, . . . ,Yn1,n2,...,nK ] .

Multiplication of a tensor by a matrix along k-th direction

Z = Y ⊗k B ⇔ Zi1,...,ik−1,j,ik+1,...iK =
∑
ik

Yi1,...,ik,...,iK Bik j .

Connection between tensors and the Kronecker product:

vec(Y ⊗1 B1 · · · ⊗K BK) = (B1 ⊗ · · · ⊗ BK)vec(Y) (1)

Complexity of computation of the left part — O(N
∑

k nk), of the right
part — O(N2).
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Covariance function

Form of the covariance function:

Kf (x, y) =

K∏
i=1

ki(x
i, yi), xi, yi ∈ si,

where ki is an arbitrary covariance function for i-th factor.

Covariance matrix:

K =

K⊗
i=1

Ki,

Ki is a covariance matrix for i-th factor.

16/39 Burnaev Evgeny



Fast computation of loglikelihood

Proposition

Let Ki = UiDiU
T
i be a Singular Value Decomposition (SVD) of the matrix

Ki, where Ui is an orthogonal matrix, and Di is diagonal. Then:

|Kg| =
∏

i1,...,iK

Di1,...,iK ,

K−1
g =

(⊗
k

UT
k

)( ⊗
k

Dk + σ2
noiseI

)−1(⊗
k

Uk

)
,

K−1
g y = vec [((Y ⊗1 U1 · · · ⊗K UK) ∗ D−1)⊗1 U

T
1 · · · ⊗K UT

K

]
,

(2)

where D is a tensor of diagonal elements of the matrix σ2
noiseI +

⊗
k Dk
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Computational complexity

Proposition

Calculation of the loglikelihood using (2) has the following computation
complexity

O

(
N

K∑
i=1

ni +
K∑
i=1

n3
i

)
.

Assuming ni � N (number of factors is large and their sizes are close) we get

O
(
N
∑

ni

)
= O

(
N1+ 1

K

)
.
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Fast computation of derivatives

Proposition

The following statements hold

Tr(K−1
g K′) =

〈
diag

(
D̂−1

)
,

K⊗
i=1

diag
(
UiK

′
iUi

)〉
,

1

2
yTK−1

g K′K−1
g y = 〈A, A⊗1 K

T
1 ⊗2 · · · ⊗i−1 K

T
i−1⊗i

⊗i
∂KT

i

∂θ
⊗i+1 K

T
i+1 ⊗i+2 · · · ⊗K KT

K

〉
,

where D̂ = σ2
noiseI +

⊗
k Dk, and vec(A) = K−1

g y.
The computational complexity is

O

(
N

K∑
i=1

ni +

K∑
i=1

n3
i

)
.
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Gaussian Processes for facotrial DoE

Issues:
1 High computational complexity: O(N3).

In case of factorial DoE the sample size N can be very large.

2 Degeneracy as a result of significantly different factor sizes.
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Degeneracy

Example of degeneracy
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Figure : Original function

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

1.5

2

2.5

 

x
1

x
2

 

GP regression
training set

Figure : Approximation obtained using GP
from GPML toolbox

21/39 Burnaev Evgeny



Regularization

Prior distribution:

θ
(i)
k − a

(i)
k

b
(i)
k − a

(i)
k

∼ Be(α, β), {i = 1, . . . , dk}Kk=1,

a
(i)
k =

ck
max

x,y∈sk
(x(i) − y(i))

, b
(i)
k =

Ck

min
x,y∈sk,x 6=y

(x(i) − y(i))

where Be(α, β) is the Beta distribution, ck and Ck are parameters of the
algorithm (we use ck = 0.01 and Ck = 2).

Initialization

θ
(i)
k =

[
1

nk

(
max
x∈sk

(x(i))− min
x∈sk

(x(i))

)]−1

.
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Regularization

Loglikelihood:

log p(y |X,θ, σf , σnoise) = −1

2
yTK−1

y y − 1

2
log |Ky| −

N

2
log 2π

+
∑
k,i

(
(α− 1) log

(
θ
(i)
k − a

(i)
k

b
(i)
k − a

(i)
k

)
+ (β − 1) log

(
1−

θ
(i)
k − a

(i)
k

b
(i)
k − a

(i)
k

))
−

−d log(B(α, β)).
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Regularization

Example of regularized approximation
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developed algorithm with regularization
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Toy problems

Set of 34 functions (usual artificial test functions used for testing of global
optimization algorithms)

Dimensionality — from 2 to 6.

Sample sizes from 80 to 216000 with full factorial DoE

Quality criteria — training time and approximation error:

MSE =
1

Ntest

Ntest∑
i=1

(f̂(xi)− g(xi))
2

Tested algorithms:
MARS — Multivariate Adaptive Regression Splines
SparseGP — sparse Gaussian Processes (GPML toolbox)
tensorGP — developed algorithm without regularization
tensorGP-reg — developed algorithm with regularization

25/39 Burnaev Evgeny



Dolan-Moré curves

T problems, A algorithms.

eta — approximation error (or training time) of a-th algorithm on t-th
problem.

ẽt = mina eta.

ρa(τ) =
#{t : eta < τẽt}

T

The higher the curve is the better works the corresponding algorithm.

ρa(1) — fraction of problems for which a-th algorithm worked the best.
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Results of experiments: training time

Figure : Dolan-Moré curves. Quality criterion — training time
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Results of experiments: approximation quality

Figure : Dolan-Moré curves. Quality criterion — MSE
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Real problem: Rotating disc of an impeller

Objective functions:

p1 — contact pressure.

Srmax — maximum radial
stress.

w — weight of disc.

The geometrical shape of the
disc is parametrized by 6 input
variables
x = (h1, h2, h3, h4, r2, r3) (r1
and r4 are fixed)

Training sample (generated
from computational physical
model):

Sample size — 14400

Factor sizes —
{1, 8, 8, 3, 15, 5}

Figure : Rotating disc of an impeller
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Results of experiment

Table : Approximation errors of p1

MAE MSE RRMS
MARS 4.4644 6.5120 0.1166

SparseGP 76.9313 86.7034 1.5530
tensorGP-reg 0.3020 0.3981 0.0070

MAE =
1

Ntest

Ntest∑
i=1

|f̂(xi)− g(xi)|,

MSE =
1

Ntest

Ntest∑
i=1

(f̂(xi)− g(xi))
2

RRMS =

√∑Ntest
i=1 (f̂(xi)− g(xi))2∑Ntest

i=1 (ȳ − g(xi))2
, ȳ =

1

N

N∑
i=1

yi.
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Results of approximation

2D-slices of approximations (other parameters are fixed)

Figure : GPML Sparse GP is applied
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Figure : Approximation obtained using
developed algorithm with regularization
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Further research: missing data

Reasons for missing points:

Data generation is in progress (each point calculation is time consuming).

Data generator failed in some points.
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Incomplete Factorial DoE

Sfull — full factorial DoE.
Nfull = |Sfull|.
S — incomplete factorial DoE.
N = |S|.
S ⊂ Sfull

⇒ Covariance matrix is not the Kronecker
product!

Kf 6=
K⊗
i=1

Ki.
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Computation of loglikelihood

Notation

{xi}
Nfull

i=1 = Sfull.

K̃f — covariance matrix for full factorial DoE Sfull.

W — diagonal matrix such that Wii =

{
1, if xi ∈ S

0, if xi /∈ S.

ỹ — vector of outputs y extended by arbitrary values.

Proposition

Let z̃∗ be a solution of

(K̃fWK̃f + σ2
noiseK̃f )z̃ = K̃fWỹ. (3)

Then the solution z∗ of (Kf + σ2
noiseI)z = y, i.e.

z∗ = (Kf + σ2
noiseI)

−1y,

has the form z∗ = (z̃∗i1 , . . . , z̃
∗
iN

), where ik ∈ {j : xj ∈ S}, k = 1, . . . , N .
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Computation of loglikelihood

R = Nfull −N — number of missing points.

Ũ =
⊗K

i=1 Ũi

D̃ =
⊗K

i=1 D̃i.
ˆ̃
D = D̃ + σ2

noiseI.

The change of variables

α̃ =


(

ˆ̃
DD̃

) 1
2
ŨT z̃ if R < N,(

σ2
noiseD̃

) 1
2
ŨT z̃ if R ≥ N.

(4)

Proposition

System of linear equations (3) can be solved using the change of variables (4)
and Conjugate Gradient Method in at most min(R+ 1, N + 1) iterations. The
computational complexity of each iteration is O(Nfull

∑
k nk).
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Computation of determinant

K̃f + σ2
noiseI =

(
Kg A
AT B

)
Determinant

|Kg| =
|K̃f + σ2

noiseI|
|B−ATK−1

g A|
. (5)

|K̃f + σ2
noiseI| is computed using formulae for full factorial case.

|B−ATK−1
g A| is computed numerically.

Proposition

The complexity of computing determinant using (5) is
O
(
min{R+ 1, N + 1}RNfull

∑
k nk

)
.

36/39 Burnaev Evgeny



Conclusion

The developed algorithm

is computationally efficient;

can handle large samples;

takes into account features of given data;

is proved to be efficient on a large set of toy problems as well as real world
problems.
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Thank you for attention!

More details are given in

Belyaev, M., Burnaev, E., and Kapushev, Y. (2014).
Exact inference for gaussian process regression in case of big data with the
cartesian product structure.
arXiv preprint arXiv:1403.6573
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